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FOREWORD

The National Communications System (NCS) in response to Presidential
Directive/NSC~53, "National Security Telecommunications Policy," is funding a
comprehensive program on the effects of nuclear weapons on selected
telecommunications systems. A portion of this effort is directed at
' determining the high-altitude electromagnetic pulse (EMP) vulnerability of the
- commercial Bell Telephone T? Carrier system, and at developing a TV Carrier
system specifically engineered to be EMP hard. The work described in this
report was performed in support of these efforts.
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1. INTRODUCTION

Investigators have measured the current induced by an electromagnetic
pulse (EMP), as produced by the repetitive EMP simulator (REPS), on a long,
terminated, insulated cable buried at a shallow depth near the air-earth
interface. The measured current is compared with analytical predictions of
the current induced on the same cable excited by an exocatmospheric EMP. The
main objectives of this paper are to evaluate the plane-wave electromagnetic
field propagation through a 1linear, isotropic, and homogeneous conducting
medium; to represent the EMP coupling to the buried cable by the equivalent
distributed-source, lumped-parameter network (LPN) model; and to compare the
results to experimental measurements using an EMP simulator.

The reflection and transmission of electromagnetic waves at a plane
surface between the air and earth media are familiar phenomena. It is assumed
in this study that the incident wave, generated in free space, is a linearly
polarized plane wave {(constant amplitude and phase), and the earth boundary is
treated as a semi~infinite, 1linear, homogeneous, isotropic, and conducting
medium.

The incident electric field above the earth is computed based on the
measured magnetic field abowve ground. Subsequently, the transmitted electric
field below ground is computed through the use of Maxwell equations and
Fresnel coefficients. The procedure used to calculate the transmitted fields
from measured magnetic field data is reported in a companion paper.! The
cable under study is a 1200-ft section of shielded cable that is terminated in
a "short circuit" to ground at both ends of the cable. The cable is buried 18
in. below the surface of the earth. A cross section of the gshielded cable is
shown in fiqure 1. The incident field is horizontally polarized and arrives
at the earth boundary at an elevation angle of 3 degrees. The earth's
parameters of conductivity, o, and dielectric permittivity, €, are derived as
a function of frequency based upon the universal impedance for soils, gener-
ated by Longmire and Smith,2 and an assumed moisture content of 10 percent by
volume.

The cable has been arranged in an arc from the center of a point-source
EMP simulator, as shown in figure 2. Thus, the peak EMP signal arrives at all
points along the cable at the same time. The particular simulator being used
in the experiment is the Army's REPS, a horizontally polarized dipole radiator
driven by a 1-MV repetitive pulse generator. The current is sensed with a
Stoddard clip-on current probe (model 91550-3), and the data are recorded on a
fiber-optic system and transmitted to an instrument van, where they are
converted back to an electrical signal and monitored with a Tektronix 7912
oscilloscope. The data are also digitized, processed, and stored on disk for
future use.

lRolando P. Manriquez and John F. Sweton, An Indirect Measure of Below-
Ground Electric Field, Conductivity, and Dielectric Constant, Harry Diamond
Laboratories, HDL-TR-2052 (September 1984).

2¢. L. Longmire and K. S. Smith, A Universal Impedance for Soils, Mission
Research Corp., Santa Barbara, CA, Contract No. DNAS00l1-75-C0094 (October
1975).




Figure 1. Cross section of shielded cable.
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Figure 2. Test configuration for HDL cable coupling
studies.

The electrical short circuit at the ends of the cable is achieved by the
use of a calcium chloride salt solution poured into a 3 x 3 x 3 ft pit
containing a 6-ft grounding rod that is attached to the cable sheath by a
standard telephone press-fit connector. The electric field incident on the
cable is obtained by the use of the total magnetic field measured at five
points along the length of the cable. An attempt to monitor the electric
field at 18 in. below the surface of the earth is documented elsewhere.l

lRolando P. Manriquez and John F. Sweton, An Indirect Measure of Below-
Ground Electric Field, Conductivity, and Dielectric Constant, Harry Diamond
Laboratories, HDL~-TR-2052 (September 1984).
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2. BURIED-CABLE RESPONSE ANALYSIS
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The analytical method used to predict the response of the buried cable is
similar to the methods used in earlier work.3’* fThe incremental section of
the equivalent distributed-source LPN model is shown in figure 3. This model
incorporates frequency-dependent passive elements. The voltage, Vi, is the
transmitted E-field for each incremental section. The impedance for each
incremental section consists of the ground impedance (zg), cable impedance
(zi), and the inductive reactance (ZL) of the insulation gap. The admittance
for each incremental section consists of the capacitive susceptance (Yd) of
the insulation in series with the admittance (Yg) of the ground. Thus, the
transmission-line parameters are

wh jmuo /28
Zg(w) =—3 * ™ log —-9-Y°b ’ (1)

(1 + 3)T/8

zi(w) = ZuaocT

S coth [(1 + /s ] (2)

J'“mo b
zL(m) = log (;) ’ (3)

210 2ne
Y () = d +3 3 . (4)

210 w2ne

Yd(m)z;;;@)_‘.j;_;(g)_ v

1/Jqu°cq = skin depth in the ground,

(5)

o
[]

O
]

I/anuoac = skin depth in the shield,

conductivity of the ground,

Q
]

Q
]

conductivity of the shield,

conductivity of the dielectric,

Q
Q
]

3g. F. vance, Coupling to Shielded Cables, John Wiley and Sons, Inc. (1978).

“Michael S. Bushell, Rolando P. Manriquez, George Merkel, and William D.
Scharf, Aurora Test Cell Electron Beam Environment--Response of Large Loop,
IEEE Trans. Nucl. Sci. NS~30, No. 6 (December 1983), 4558-4563.
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dielectric constant of the ground,

(]
L]

€q = dielectric constant of the protective jacket of the cable,
Mg = 4n x 1077 H/m,

Yo = 1.781 = BEuler's constant,

b = ocuter radius of the insulation,

a = outer radius of the cable shield, and

T = thickness of the shield.

o——o—={ oz ] a2 ya Zn2

Yeiz YeAz
)
Y'Al Y.éz
ol L
- . ]

Figure 3. 1Incremental w section of equivalent
distributed-source lumped-~parameter
network model of buried cable.

The transmission-line response is obtained by the implicit method.® At
each increment along the line, the current is determined by solving the matrix
equation

(z} (1] = V], (6)

where [Z] is the impedance matrix, and [I] and [V] are the vector forms of the
currents and voltages, respectively. The impedance matrix is expressed as a
set of (Z] coefficients and can be found by the application of Kirchoff's
current and voltage law to the equivalent transmission line. The elements of
the voltage matrix [V] are the source terms for the transmission line, as
shown in figure 3. Hence, equation (6) is expanded in the form®

SB. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods,
John Wiley and Sons (1969), 440-442.

10




b1, + ¢ I, =%
aZI, + b212 + c213 = v2
azI, + byI; + o3I, =V,
o o e (7)
8 aiTj-1 + byl *+ S51in =V
2 .
| an-1ln-2 * PpqInq * SpgIn = Vg
y agI,_q + b I, =V, .
i} where the (2] coefficients are
1" €= =% .
-1 = “22n-2
bpoy = Zap.q + Z2p-2 *+ 23y
Cn-1 = ~2Z2n
ap = “Zp-2
by = Zap-1 + Zpp-2 * 22
Note that 2,4 = z2(w), Zgyen = VY¥(W), V4 = E; (w)Az, and n = total number of

sections.

The set of the [2]) coefficients a, b, and ¢ alone is called the tridi-
agonal matrix. The system matrix (eq (7)) is readily solved by a Gaussian
elimination method with a maximum of three variables per equation, and the
gsolutions can be expressed very concisely. The recursion solutions of
equation (7) for each frequency yield the currents through each branch.

The cable response obtained with the frequency-domain LPN model used in
this study was then compared to two solutions based on (1) Vance's approach3
usiag constant or frequency-dependent ¢ and € and (2) the time-domain LPN

3g, P. vance, Coupling to Shielded Cables, John Wiley and Sons, Inc. (1978).
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apptoach" using constant ¢ and €. The number of incremental sections was
increased until good agreement between the results of the LPN models and the
results of Vance's approach was achieved for constant ¢ and €., The advantages
of the frequency-domain LPN technique are that (1) o and € can be functions of
frequency and moisture content and (2) different E-field values can be used
for each incremental section. Finally, the solution of the short-circuit
current, Isc(w), at the last branch is inverse Fourier transformed® to yield
the desired time response, Isc(t), at the end of the buried cable.

3. DISCUSSION OF RESULTS

The magnetic field, Hx(t), was measured using an H-field sensor at a
height of 1 m above ground and located on one of the faces of the Stanford
Research Institute cubical sensor box.’ The digitized waveforms of measured
l-lx(t) at test points TP1 to TP5 (see fig. 2) are shown in figure 4. The
transmitted electric fields, E(t), below ground at TP1 to TPS5 are shown in
figures 5 to 7 for constant values of conductivity ¢ = 0.001, 0.007, and 0.02
mho/m with dielectric constant €, = 15. These figures show the early-time
variations of E(t) up to 1 us. Although the calculations were carried to
5 us, all the E(t) beyond 1 us are small. As shown in figures 5 to 7, both
amplitude and waveform are significantly affected by changes in conductivity
but are relatively insensitive to changes in dielectric permittivity.

In reality, the conductivity and dielectric permittivity are functions of
frequency and depend upon the moisture content of the soil. Longmire and
Smith's universal formula? is used to determine ¢ and €, for variation of
moisture content. These are shown in figures 8 and 9. Figures 10 and 11 show
the effects of these frequency functions for 10- and 25-percent moisture
cnntent, respectively, on E(t) at TP1 and TPS.

The transmitted fields, conductivity, and dielectric permittivity are
input to the frequency~domain LPN computer program used to calculate the
short-circuit current response of the buried cable. The impedance and
admittance parameters were increased by a factor of 2 to obtain a better
correlation between the measured and calculated short-circuit current at early
times.

2¢. L. Longmire and K. S. Smith, A Universal Impedance for Soils, Mission
Research Corp., Santa Barbara, CA, Contract No. DNAS001-75-C0094 (October
1975).

“Michael S. Bushell, Rolando P. Manrigquez, George Merkel, and William D.
Scharf, Aurora Test Cell Electron Beam Environment--Response of Large Loop,
IEEE Trans. Nucl. Sci. NS-30, No. 6 (December 1983), 4558-4563.

balfred G. Brandstein and Egon Marx, Numerical Fourier Transform, Harry
Diamond Laboratories, HDL-TR-1748 (September 1976).

7B. c. Tupper, R. H. Stehle, and R. T. Wolfram, EMP Instrumentation
Development, Stanford Research Institute, report 7990, under contract to HDL,
Contract DAAK02=-69-C-0674 (June 1972).
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Figure 4. Digitized waveforms of measured H,(t) at TP1 to TPS.
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Figure 5. Transmitted electric field at TP1 to TPS with o = 0.001 mho/m

and € = 15.
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Figure 6. Transmitted electric field at TP1 to TPS with
¢ = 0.007 mho/m and €, = 15,
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Figure 7. Transmitted electric field at TP1 to TPS with
¢ = 0.02 mho/m and €, = 15.
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Figure 8. Soil conductivity with varying moisture content
(5 to 25 percent).
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Figure 9. Soil dielectric constant with varying moisture content
(5 to 25 percent).
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FPigure 12 compares the measured and calculated E(t) with ¢ and €, varying
with frequency at 5-, 10-, and 25-percent moisture content. Values of ¢ =
0.007 mho/m, €, = 15, and 10-percent moisture content yield close agreement
between the measured and LPN data at early times. These values were also
determined empirically from correlation between the measured and calculated
transmitted electric fields below ground, as cited elsewhere.! The comparison
between the measured and calculated Ij. (t) with ¢ = 0.001, 0.007, and 0.02
mho/m and €, = 15 are shown in figure 13. Figure 14 shows the late-time
measured short-circuit current.

200 T T =T
e MEASURED DATA
! ——— LPN (5%)
L —caee PN (10%)
< 100 I —— PN (25%) .
e
e R
< \‘ -
< ¥\
£, '\\‘
3, rae
Samr,
.10 1 1 i
'] 200 400 600 300

TIME (u3) (x 1073

Figure 12. Comparison between measured
and IPN data with varying
moisture content (¢ and €
both functions of frequency).

400 T T T

e MEASURED DATA

e—ceeme LPN (o = 0.001 MHOM, ¢, = 15)
~===a LPN(o = 0.007 MHOM, ¢, = 15)
L’\ ——e LPN (0 = 0.02 MHOM, ¢; = 15)

igg (A) (x 107

-200 1 1
Figure 13. Comparison between measured
and LPN short-circuit current
with representative constant
values of o and Epe

T™E (u5) (x 10°2)

lrolando P. Manriquez and John F. Sweton, An Indirect Measure of Below-
Ground Electric Field, Conductivity, and Dielectric Constant, Harry Diamond
Laboratories, HDL-TR-2052 (September 1984).
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Figure 14. Late-time measured short-circuit
current.

4. CONCLUSION

It can be seen from the data (fig. 12) that the risetime and amplitude of
the calculated and measured currents are in good agreement. However, for the
late-time waveshape (fig. 12 and 14), there is a significant divergence
between the measured and calculated data. The reason or reasons for this
disagreement are not known, but it is clear that if this discrepancy results
from the (near-field) proximity of the cable to the simulator (a likely
possibility), then the result to distributed system testing could be
significant. On the other hand, if this discrepancy is the result of some
factor not adequately accounted for in the analytic calculation, the result to
distributed system analysis would be similarly significant.
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